Conformations of Substituted Benzaldehydes and Acetophenones by Molecular Polarisability Measurements and Infrared Spectroscopy

By C. T. Aw, H. H. Huang,* and E. L. K. Tan, Chemistry Department, University of Singapore, Singapore 10

Dipole moments and molar Kerr constants at 25 °C in carbon tetrachloride solution are recorded for a series of para- and meta-substituted benzaldehydes and acetophenones. From these results, supplemented by i.r. data, information on the preferred molecular conformations of these compounds is obtained.

THIS paper reports the dipole moments and molar Kerr constants of a series of substituted benzaldehydes and acetophenones whose values are analysed to yield information concerning the preferred molecular conformations in solution. Supplementary i.r. evidence in the case of *m*-nitrobenzaldehyde, 3,4-dichloroacetophenone, and *m*-nitroacetophenone is also presented.

EXPERIMENTAL

All the solutes were commercial. They were distilled under reduced pressure or recrystallised as appropriate, and used immediately. In the case of the benzaldehydes, all operations were conducted under nitrogen as they tend to be oxidised to benzoic acids by oxygen.

Dielectric constants, densities, and refractive indices were determined by standard procedures 1,2 and Kerr effects by the photometric method.³ The results are in Table 1, standard notation ² being used. The i.r. spectra were obtained with a Perkin-Elmer 337 instrument and are deposited together with detailed dielectric and electric bire-

* For details of Supplementary Publications see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp. are supplied as full-size copies).

¹ H. H. Huang and E. P. A. Sullivan, Austral. J. Chem., 1968, **21**, 1721.

² R. J. W. Le Fèvre, (a) ' Dipole Moments,' 3rd edn., Metheun, London, 1953, ch. 2; (b) Adv. Phys. Org. Chem., 1965, 3, 1.

fringence data as Supplementary Publications No. SUP 20423 (18 pp., 1 microfiche).*

Previous Measurements .- The dipole moments reported agree reasonably well with literature values.^{4,5} However, those of p-fluoroacetophenone, m-fluoroacetophenone, 3,4dichloroacetophenone, o- and m-bromobenzaldehyde, and o- and m-fluorobenzaldehyde appear not to have been recorded before. The $_{m}K$ values of benzaldehyde and acetophenone have been reported; 6 those of *m*- and *p*-chlorobenzaldehydes and -acetophenones determined in this work may be compared with the values published 7 when our work was near completion.

DISCUSSION

Calculations of Molar Kerr Constants.-Theoretical molar Kerr constants for the para-substituted and metasubstituted benzaldehydes and acetophenones were calculated for the likely structures, which are (I) for the para-compounds, and (II) and (III) for the metacompounds. Standard procedures² were used in these

² H. H. Huang and S. C. Ng, J. Chem. Soc. (B), 1968, 582.
⁴ A. L. McClellan, 'Tables of Experimental Dipole Moments,' W. H. Freeman and Co., San Francisco, 1963.

V. Baliah and R. Aparajithan, *Tetrahedron*, 1963, 19, 2177.
 P. H. Gore, P. A. Hopkins, R. J. W. Le Fèvre, L. Random,

and G. L. D. Ritchie, J. Chem. Soc. (B), 1971, 120. ⁷ C. L. Cheng, R. J. W. Le Fèvre, G. L. D. Ritchie, P. A. Goodman, and P. H. Gore, J. Chem. Soc. (B), 1971, 1198.

TUDED I

Polarisations, refractions, dipole moments and molar Kerr constants at infinite dilution in carbon tetrachloride at 25 °C

Compound	αε1	β	γ	δ	₂ P/c.c.	$R_{\rm D}({\rm c.c.})$	$R_{\rm D}({\rm calc.})$	μ/D	$10^{12} \infty (mK_2)$
Acetophenone	14.99	-0.526	0.094	327	$224 \cdot 2$	36.8	$35 \cdot 9$	$2 \cdot 93 \pm 0 \cdot 01$	341 ± 5
p-Fluoroacetophenone	8.51	-0.392	0.045	103.1	159.7	36.0	$35 \cdot 4$	$2 \cdot 44 \pm 0 \cdot 01$	123 ± 2
<i>p</i> -Chloroacetophenone	8.09	-0.227	0.098	53.5	168.6	41.2	40.2	$2{\cdot}48\pm0{\cdot}01$	57 ± 3
<i>p</i> -Bromoacetophenone	6.03	-0.029	0.097	15.4	164.6	44.7	43.7	$2 \cdot 40 \pm 0 \cdot 01$	24 ± 0.6
p-Nitroacetophenone	12.95	-0.191	0.108	$329 \cdot 1$	$262 \cdot 4$	$42 \cdot 2$	42.5	$3\cdot 26\pm 0\cdot 01$	475 ± 8
4-Acetylpyridine	10.75	-0.475	0.075	129	170.4	$34 \cdot 9$	33.9	$2{\cdot}56\pm0{\cdot}02$	128 ± 6
<i>m</i> -Fluoroacetophenone	12.73	-0.303	0.055	$199 \cdot 2$	219.1	$34 \cdot 9$	$35 \cdot 4$	$2\cdot99\pm0\cdot01$	238 ± 6
<i>m</i> -Chloroacetophenone	10.06	-0.281	0.091	$185 \cdot 4$	201.0	40·7	40.2	2.78 ± 0.02	249 ± 4
<i>m</i> -Bromoacetophenone	8.18	-0.029	0.098	151.0	210.0	44.5	43.7	2.82 ± 0.01	262 ± 10
<i>m</i> -Nitroacetopĥenone	15.36	-0.236	0.093	358.8	305.9	$42 \cdot 9$	42.5	3.57 ± 0.01	517 ± 4
3-Acetylpyridine	10.41	-0.384	0.101	115	163.3	34.7	33.9	$2 \cdot 49 \pm 0 \cdot 01$	120 ± 4
o-Dichlorobenzene	6.78	-0.195	0.079	201	137.6	35.6	36.1	$2 \cdot 21 \pm 0 \cdot 01$	259 ± 4
2,5-Dichloroacetophenone	7.95	-0.138	0.091	2.84	198.6	45.3	45.9	2.72 ± 0.01	*
3,4-Dichloroacetophenone	6.97	-0.129	0.091	79.5	178.7	45.5	45.9	$2 \cdot 53 \pm 0 \cdot 01$	130 ± 4
Benzaldehyde	16.32	-0.514	0.101	527	213.0	32.7	$31 \cdot 1$	$2 \cdot 95 \pm 0 \cdot 04$	490 ± 21
o-Bromobenzaldehyde	8.51	0.024			199.9	40.2	38.9	2.78 ± 0.01	_
o-Chlorobenzaldehyde	12.15	-0.266			213.5	37.5	36.1	$2 \cdot 92 \pm 0 \cdot 03$	
o-Fluorobenzaldehyde	13.38	-0.359			206.8	$33 \cdot 2$	30.9	2.90 ± 0.05	
<i>m</i> -Bromobenzaldehyde	7.52	0.008	0.097	180	181.1	40.1	38.9	$2 \cdot 61 \pm 0 \cdot 06$	291 ± 15
<i>m</i> -Chlorobenzaldehyde	10.27	-0.251	0.104	208	$185 \cdot 1$	37.2	$36 \cdot 1$	2.67 ± 0.01	255 ± 13
<i>m</i> -Fluorobenzaldehyde	11.96	-0.333	0.051	289	187.5	31.5	30.9	2.75 ± 0.02	313 + 30
<i>m</i> -Nitrobenzaldehyde	15.88	-0.204	0.125	342	278.6	40.3	37.6	$3 \cdot 46 + 0 \cdot 02$	451 + 8
p-Bromobenzaldehyde	4.64	0.012	0.121	133	124.3	42.0	38.9	1.98 ± 0.02	217 + 26
p-Chlorobenzaldehvde	6.00	-0.261	0.125	164	121.9	38.8	36.1	1.99 + 0.01	202 + 9
p-Fluorobenzaldehvde	6.66	-0.372	0.065	176	118.7	$33 \cdot 2$	30.9	2.02 + 0.02	192 + 8
\hat{p} -Nitrobenzaldehyde †	4.38	0.341	0.049	$2 \cdot 43$	158.5	39.7	37.6	$2 \cdot 39 \stackrel{-}{\pm} 0 \cdot 01$	$262\stackrel{-}{\pm}10$
		* Indisti	nguishable	e from zero	. † In (С.Н			

calculations by tensor addition of the bond and group polarisabilities listed in Table 2 and with reference to the

(I)

arbitrary axis system shown. It was thought reasonable to assume normal valence angles of 120° around the

TABLE 2

Anisotropic polarisabilities of bonds and groups *

· · · · ·	1		0	1
Bond or group	$b_{ extsf{L}}$	$b_{\mathbf{T}}$	$b_{\mathbf{V}}$	Ref.
C-H	0.65	0.65	0.65	a
CC	0.97	0.26	0.26	a
C=O	$2 \cdot 30$	1.40	0.46	a
Ph	10.56	10.56	6.72	a
C _{Ph} -NO ₂	5.04	2.60	1.31	b
C-C ₆ H ₄ -F	12.37	10.25	6.95	с
C-C ₆ H ₄ -Cl	15.50	11.60	8.30	с
C-C ₆ H ₄ -Br	$17 \cdot 10$	12.40	9.10	с
C-Py	11.02	10.01	6.06	d

* Polarisabilities are quoted throughout in $10^{-24}~{\rm cm^3}$ units $({\rm \AA^3})$ and molar Kerr constants in $10^{-12}~{\rm e.s.u.}$

^a R. J. W. Le Fèvre, B. J. Orr, and G. L. D. Ritchie, J. Chem. Soc. (B), 1966, 273. ^b K. E. Calderbank, R. J. W. Le Fèvre, and G. L. D. Ritchie, J. Chem. Soc. (B), 1968, 503. ^c R. J. W. Le Fèvre and L. Radom, J. Chem. Soc. (B), 1967, 1295. ^d K. K. Chiu, Thesis, University of Singapore.

carbonyl carbon atom. When the experimental molar refraction exceeded the value calculated from standard

bond and group values ⁸ as in Table 3, allowance was made for exaltation of polarisability when computing the molar Kerr constants. The calculated molar Kerr constants for structures (I)—(III) are in Table 4.

TABLE 3

Exaltations of refraction and polarisability

			$10^{24}\Delta b/$
	$R_{ m D}({ m obs})$	$R_{\rm D}({\rm calc})$	cm ³
<i>p</i> -Fluorobenzaldehyde	33.2	30.9	$2 \cdot 2$
p-Chlorobenzaldehyde	$38 \cdot 8$	36.1	$2 \cdot 8$
p-Bromobenzaldehyde	$42 \cdot 0$	38.9	$3 \cdot 1$
p-Nitrobenzaldehyde	39.7	37.6	$2 \cdot 4$
<i>p</i> -Fluoroacetophenone	36.0	$35 \cdot 4$	0.7
<i>p</i> -Chloroacetophenone	$41 \cdot 2$	40.2	$1 \cdot 2$
p-Bromoacetophenone	44 ·7	43.7	$1 \cdot 2$
p-Nitroacetophenone	$42 \cdot 2$	42.5	0.8
4-Acetylpyridine	$34 \cdot 9$	33.9	$1 \cdot 2$
<i>m</i> -Fluorobenzaldehyde	31.5	30.9	0.2
m-Chlorobenzaldehyde	$37 \cdot 2$	$36 \cdot 1$	0.9
m-Bromobenzaldehyde	40.1	38.9	1.0
m-Nitrobenzaldehyde	40.3	37.6	3.0
<i>m</i> -Fluoroacetophenone	$34 \cdot 9$	$35 \cdot 4$	
<i>m</i> -Chloroacetophenone	40.7	40.2	0.6
m-Bromoacetophenone	44.5	43.7	$1 \cdot 0$
<i>m</i> -Nitroacetopĥenone	$42 \cdot 9$	42.5	0.5
3-Acetylpyridine	34.7	33.9	$1 \cdot 0$
2,5-Dichloroacetophenone	45.3	45.9	
3.4-Dichloroacetophenone	45.5	45.9	

para-Substituted Benzaldehydes.—Since these benzaldehydes may reasonably be expected to exist as resonancestabilised planar forms of (I), the dipole moments and molar Kerr constants for these planar structures were first calculated. The dipole moment of (I) is the vector resultant of components μ_1 and μ_2 having the same magnitudes and directions as the moments of benzaldehyde (2.95 D) and PhX respectively. Although μ_2 unquestionably acts along C-X, μ_1 is known to be directed

⁸ W. T. Cresswell, G. H. Jeffery, J. Leicester, and A. I. Vogel, J. Chem. Soc., 1952, 514.

at an angle of ca. 20° to the C=O bond. The actual values of this angle for the various para-substituted benzaldehydes in Table 4 emerge as in Table 5, when the resultant moment of known values of μ_1 and μ_2 , which is a function of the angle subtended by these two vectors, is equated with the observed moment.

In the case of the fluoro-, chloro-, and bromo-compounds the calculated $_{m}K$'s ($\times 10^{12}$), exaltation not being taken into consideration, are 142, 102, and 112 respectively. When the exaltation of polarisability is

(-I, -M) effect of the NO₂ group. This leads to $_{
m m}K = 249 imes 10^{-12}$ which compares favourably with the experimental value of 262×10^{-12} . Other approaches to the problem, such as regarding the formyl group as a freely rotating unit, or assigning the exaltation of polarisability in the direction of the formyl group, result in poorer agreement with experiment.

We therefore conclude that the results for the *para*substituted benzaldehydes support planar structures for all these compounds.

	Tabl	.е 4		
alculated	molar	Kerr	constants	

			Calcu	lated	molar]	Kerr con	stants						
		Degree of											
	Struc-	non-											
Compound	ture	planarity/°	b_{xx}	b_{yy}	b_{zz}	b_{xy}	b_{yz}	b_{zx}	μ_x	μ_{y}	μ_z	$_{\mathbf{m}}K$ *	$_{\mathbf{m}}K^{\dagger}$
<i>p</i> -Fluorobenzaldehyde	(I)	0	12.97	14.64	8.050	0.390	0	0	1.73	1.04	0	142	206
<i>p</i> -Chlorobenzaldehyde	ÌÌ	0	14.32	17.77	9.400	0.390	0	0	1.86	0.71	0	102	182
p-Bromobenzaldehyde	Ì	0	15.12	19.37	10.20	0.390	0	0	1.80	0.83	0	112	204
p-Nitrobenzaldehyde	Ì	0	15.06	18.41	8.97	0.390	0	0	1.82	-1.55	Ó	214 •	249
<i>p</i> -Fluoroacetophenone	Ì	20	15.03	16.59	9.85	0.280	0.100	0.620	$2 \cdot 24$	0.19	0.81	118	132
<i>p</i> -Chloroacetophenone	ÌÌ	20	16.38	19.72	11.20	0.280	0.100	0.620	2.24	0.10	0.81	67	80
<i>p</i> -Bromoacetophenone	ÌΪ	20	17.18	21.32	12.00	0.280	0.100	0.620	2.24	0.19	0.81	51	56
p-Nitroacetophenone	ÌΪ	20	17.55	20.14	10.54	0.280	0.100	0.620	$2 \cdot 24$	-2.24	0.81	425	440
4-Acetylpyridine	(I)	20	14.79	15.24	8.96	0.280	0.100	0.620	$2 \cdot 24$	-0.74	0.81	162	186
<i>m</i> -Fluorobenzaldehyde	(ÌÌ)	0	14.02	13.59	8.05	-0.217	0	0	3.07	1.58	0	383	430
2	(ÎII)	0	14.02	13.59	8.05	-0.997	0	0	-0.73	1.58	0	144	159
<i>m</i> -Chlorobenzaldehyde	(II)	0	16.70	15.38	9.40	-0.987	0	0	$3 \cdot 26$	1.47	0	428	499
-	(III)	0	16.70	15.38	9.40	-1.767	0	0	-0.53	1.47	0	139	157
<i>m</i> -Bromobenzaldehyde	(II)	0	18.10	16.38	10.20	-1.334	0	0	$3 \cdot 20$	1.50	0	414	488
-	(III)	0	18.10	16.58	10.20	-2.114	0	0	-0.59	1.50	0	166	186
<i>m</i> -Nitrobenzaldehyde	(II)	0	17.34	16.39	8.76	-0.667	0	0	5.30	0.29	0	1475	2012
-	(III)	0	17.34	16.39	8.76	-1.447	0	0	1.51	0.29	0	134	183
<i>m</i> -Fluoroacetophenone	(II)	21	16.09	15.54	9.85	-0.330	-0.100	0.620	3.54	0.92	0.86		486
	(III)	21	16.09	15.54	9.85	-0.890	0.100	-0.620	-1.02	0.92	0.86		80
<i>m</i> -Chloroacetophenone	(II)	23	18.51	17.70	10.93	-0.100	-0.140	0.760	3.71	0.72	0.98		605
_	(III)	23	18.51	17.70	10.93	-0.140	0.140	-0.760	-0.85	0.72	0.98		74
<i>m</i> -Bromoacetophenone	(II)	25	20.50	18.78	12.09	-0.180	-0.140	0.760	3.49	0.92	1.10		685
	(III)	25	20.50	18.78	12.09	-0.600	0.140	-0.760	-0.87	0.92	1.10		38
m-Nitroacetophenone	(II)	15	18.40	18.16	10.10	-0.620	-0.060	0.440	5.76	-0.26	0.61		2049
	(III)	15	18.40	18.16	10.10	-0.143	0.060	-0.440	$1 \cdot 10$	-0.26	0.61		81
3-Acetylpyridine	(II)	29	15.33	16.60	8.890	0.040	-0.520	0.060	4.23	0.44	1.10		459
	(III)	29	15.33	16.60	8.890	-0.220	0.520	-0.060	-0.09	0.44	1.10		-52
2,5-Dichloroacetophenone	(VI)	23	21.55	19.07	11.89	2.610	-0.140	0.760	2.02	1.44	0.98		576
	(VII)	23	21.55	19.07	11.89	2.190	0.140	-0.760	-2.05	1.44	0.98		125
3,4-Dichloroacetophenone	(IV)	23	20.37	21.69	12.82	0.700	-0.330	1.840	3.29	-0.26	0.98		505
	(V)	23	20.37	21.69	12.82	-1.110	-0.020	0.320	-1.02	-0.26	0.98		-32
o-Dichlorobenzene			15.46	16.50	9.570	0.910	0.190	-1.080	1.91	1.11	0		261

* Calculated without exaltation, from the component molecular polarisability matrix elements given in the Table. † Calculated with exaltation.

^a Calculated from the group polarisabilities for C_{ph}-NO₂ in M. J. Aroney, H. H. Huang, R. J. W. Le Fèvre, and G. L. D. Ritchie, J. Chem. Soc. (B), 1966, 416.

assigned equally along the X and Y axes, the calculated $_{m}K$'s become 206, 182, and 204 respectively, in reasonably good agreement with our experimental results (Table 1).

		TABLE 5	
		Angles between	C=O and μ_1 in
	μ_2	Benzaldehydes	Acetophenones
\mathbf{PhF}	1.45	24	4
PhCl	1.65	21	2
PhBr	1.52	22	5
$PhNO_2$	3.96	24	6
C ₅ H ₅ N	2.39		4

For p-nitrobenzaldehyde, it seems to be more reasonable to assign the exaltation of polarisability entirely along the C-NO₂ bond, in keeping with the powerful ⁹ P. H. Gore, P. A. Hopkins, R. J. W. Le Fèvre, L. Radom, and G. L. D. Ritchie, *J. Chem. Soc.* (B), 1971, 120.

para-Substituted Acetophenones.-The available evidence ⁹ supports a planar conformation for acetophenone which is stabilised by resonance interaction between the acetyl group and the benzene ring. Although it has been suggested that the dipole moment of acetophenone (2.93 D) itself acts at an angle of about 10° to the C=O bond,¹⁰ for the purpose of Kerr constant calculations, the direction of the resultant vector of μ_1 (2.93 D) and μ_2 (I) is determined by equating it with the observed moment. Initially we calculate $_{m}K$'s for coplanar structures for the *para*-substituted acetophenones. With the exaltation of polarisability assigned along the X-axis, the $_{m}K$'s $(\times 10^{12})$ are: X = F, 183; Cl, 146; Br, 131; NO₂, 566; and 4-acetylpyridine, 288. Comparison with Table 1

¹⁰ J. B. Bentley, K. B. Everard, R. J. B. Marsden, and L. E. Sutton, J. Chem. Soc., 1949, 2957.

shows that the calculated values are all substantially higher than the observed values. However, agreement between calculated and observed values can be achieved by rotating the C-CO-C plane away from the aromatic plane. The angles of rotation necessary for this purpose are summarised in Table 6. Thus it is seen that the *para*-substituted acetophenones are all effectively nonplanar, in agreement with an earlier report for *p*-chloroacetophenone.⁷ The explanation offered for *p*-chloroacetophenone, that an electron-withdrawing group causes a lowering of the barrier to internal rotation by constants, the general conclusion can be drawn that the trans-(III) form predominates in solution, except in the case of m-fluoroacetophenone where the dipole-moment data suggest a distribution somewhat in favour of the cis-(II) form.

In order to interpret the results for 3,4-dichloroacetophenone, we consider first the data for *o*-dichlorobenzene. Bastiansen and Hassel ¹⁴ concluded from their electrondiffraction measurements that the two chlorine atoms are bent out of the plane of the ring by 18° with the two chlorine atoms on opposite sides of the ring plane. If we

	$\mathbf{T}_{\mathbf{A}}$	ABLE 6							
cis-tran	s-Popu	lation	distri	bution					
	meta	a-X-ac	etophe	nones		met	a-X-be	nzalde	hydes
X	F	Cl	Br	NO ₂	(3-Acetylpyridine)	F	Cl	Br	NO ₂
Dihedral angle (between C-CO-C plane and aromatic plane)	21°	23°	25°	15°	29°	0	0	0	0
Dipole moments % cis(II)	55	42	45	35	27	54	45	42	37
% trans(III)	45	58	55	65	73	46	55	58	63
Kerr constant % cis(II)	39	33	35	22	34	57	28	35	15
% trans(III)	61	67	65	78	66	43	72	65	85

reducing the mesomeric interaction of the acetyl group with the aromatic ring, seems to be applicable for all the compounds considered here.

meta-Substituted Benzaldehydes.—Several workers 11,12 have concluded from i.r. spectral studies of rotational isomerism in *m*-halogenobenzaldehydes that in both the liquid and vapour state two conformers are present and that the cis-forms (II) of m-chloro- and m-bromobenzaldehyde are more stable than the trans-forms (III). This contrasts with the earlier deduction of Karabatsos and Vane¹³ from ¹H n.m.r. coupling constants that the trans-form (III) is the more stable species. More recently, however, polarisability measurements on mchlorobenzaldehyde 7 have supported the n.m.r. work. We now analyse our results for the meta-substituted benzaldehydes using the same dipole-moment components, polarisabilities, and assignment of exaltation of polarisability as in the case of the *para*-substituted benzaldehydes, with the conclusions shown in Table 6. They confirm that in CCl_{4} solution, the *trans*-form is energetically the more favoured structure for the meta-substituted benzaldehydes except m-fluorobenzaldehyde, where the distribution is approximately equimolecular.

meta-Substituted Acetophenones.—Since our results for the para-substituted acetophenones have indicated that these molecules are probably non-planar, we have carried out an analysis for the meta-substituted acetophenones assuming appropriate non-planar forms of cis-(II) and trans-(III) with dihedral angles as given in Table 4. Again, although the results based on dipole moments alone generally differ somewhat from those based on Kerr adopt this model, the $_{m}K$ of *o*-dichlorobenzene calculated on this basis turns out to be 261 which is in satisfactory agreement with the observed value of 259. We accordingly assume that the *ortho*-chlorines are similarly disposed in 3,4-dichloroacetophenone. For a dihedral angle of 23° the *cis*: *trans* ratio derived from the experimental data emerges as 44:56 (dipole moment) and 30:70 (Kerr constant), *i.e.*, with the *trans*-isomer as the more stable species. These results are in close agreement with those for *m*-chloroacetophenone (Table 6).

ortho-Substituted Benzaldehydes and 2,5-Dichloroacetophenone.—The o-halogenobenzaldehydes can exist in two rotational isomeric forms (VI) and (VII). The possi-

bility of intramolecular hydrogen bonding aided by resonance stabilisation, and consideration of steric

¹¹ G. A. Crowder and F. Northam, J. Chem. Phys., 1969, **50**, 4865.

¹² F. A. Miller, W. G. Fately, and R. E. Witkowski, Spectrochim. Acta, 1967, A, **23**, 891.

¹³ G. J. Karabatsos and F. M. Vane, J. Amer. Chem. Soc., 1963, **85**, 3886.

¹⁴ O. Bastiansen and O. Hassel, Acta Chem. Scand., 1947, 1, 149.

effects based on scale models, suggests that the *trans*isomer (VI) should be favoured over the *cis*-isomer (VI). The calculated dipole moments for structure (VII) are: X = F, 3.02 D; Cl, 3.10 D; and Br, 3.07 D; for structure (VI) they are: X = F, 4.24 D; Cl, 4.47 D; and Br, 4.39 D. Since the observed dipole moments are only slightly smaller than the values calculated for the *trans*structures, our experimental results suggest that the *o*-halogenobenzaldehydes exist entirely in the *trans*conformation.

The observed moment of 2,5-dichloroacetophenone (2.72 D) is somewhat smaller than that of acetophenone (2.93 D). Although we cannot distinguish between *cis*and *trans*-conformations for this molecule on the basis of dipole moments alone, its smaller dipole moment suggests a smaller degree of mesomeric interaction between the acetyl group and the benzene ring and therefore favours a non-planar structure. By analogy with *o*-chloroacetophenone ⁷ a dihedral angle of about 45° may be assumed. Using this angle and from the observed mK value of *ca*. 0 and the calculated mK's for the *cis*- and *trans*-conformations (Table 4) we obtain a *cis*: *trans*-ratio of *ca*. 14:86. This is however not a unique solution as several undetermined variables are involved.

Spectroscopic Discussion.—Previous i.r. spectroscopic work 11,12,15,16 supports the view that rotational isomerism occurs in the *m*-halogeno-benzaldehydes and -acetophenones. The i.r. spectra of *m*-nitrobenzaldehyde, *m*-nitroacetophenone, and 3,4-dichloroacetophenone obtained in this work for the solids and solutions seem best interpreted in terms of the existence of these compounds in two rotational isomeric forms in solution. Further, by analogy with the *m*-halogenobenzaldehydes, the presence of extra bands in solution suggest the existence of only one form in the solid state.

In the case of *m*-nitrobenzaldehyde, comparison of the solid and solution spectra shows that the solution-state bands at 708, 900, 1158, 1285, 1730, 2800, and 2825 cm⁻¹ are missing from the solid-state spectrum. The presence of two carbonyl stretching vibrations at 1710 and 1730 cm⁻¹ is a good indication of the presence of two isomers, the *cis*-(II) and *trans*-(III) forms. In the solid-state spectrum however, we note besides the presence of a ¹⁵ H. G. Silver and J. L. Wood, *Trans. Faraday Soc.*, 1964, **60**, 5.

carbonyl band at 1709 another band at 1690 cm⁻¹. It seems unlikely that the latter band is due to a carbonyl stretching vibration because the solid-state spectrum of p-nitrobenzaldehyde (in which *cis-trans*-isomerism does not arise) also shows two bands in this region, at 1710 cm⁻¹ and at 1680 cm⁻¹, and only the former has been recognised ¹⁷ as corresponding to a carbonyl stretching vibration.

In order to determine which set of bands is due to the *trans*- or *cis*-forms, i.r. spectra were obtained for solutions of *m*-nitrobenzaldehyde in solvents of different dielectric constants. It was observed that the intensity of the 1710 cm⁻¹ band increased with respect to that of the 1730 cm⁻¹ band as the dielectric constant of the solvent increased. This could mean that the lower-frequency band at 1710 cm⁻¹ is due to the more polar rotamer, namely the *cis*-form. In the solid state, only the 1710 cm⁻¹ carbonyl band is evident, suggesting the presence of only the *cis*-form in that state.

There are two lone-hydrogen out-of-plane wag bands at 900 and 904 cm⁻¹ in the solution spectrum and only one band at 918 cm⁻¹ in the solid-state spectrum. The absence of the low-frequency band from the solid-state spectrum is another good indication of the presence of only one isomer in the solid state.

In the case of *m*-nitroacetophenone and 3,4-dichloroacetophenone the extra bands in solution are 903, 935, 1290, and 3000 cm⁻¹ and 530, 905, 968, and 2560 cm⁻¹ respectively. In contrast to *m*-nitrobenzaldehyde, the single-band character of the carbonyl stretching frequency is apparently preserved in solution as well as in the solid state. It appears that the vibrational frequencies of this particular band for the two species in solution are not sufficiently well-separated for them to be resolved effectively. The band at *ca*. 900 cm⁻¹ missing from the solid-state spectrum is present in solution for all three compounds. The i.r. evidence in this section therefore is consistent with the occurrence of the compounds in the two specified conformations in solution but in only one in the solid state.

[2/282 Received, 7th February, 1972]

¹⁸ A. R. Katritzky, M. V. Sinnott, T. T. Tidewell, and R. D. Topsom, J. Amer. Chem. Soc., 1969, **91**, 628.
 ¹⁷ H. W. Thompson, R. W. Needham, and D. Jameson,

¹⁷ H. W. Thompson, R. W. Needham, and D. Jameson, *Spectrochim. Acta*, 1957, **9**, 236.